CNews Cloud: Облачные сервисы
Статья

Что выгоднее – внедрить одну интеллектуальную систему, или интегрировать несколько ИИ-сервисов?

Искусственный интеллект ПО Цифровизация Импортонезависимость Облака
/ Фото: © IgorVetushko / Фотобанк Фотодженика

Интерес к импортозамещению в ИТ растет. Но рассматривать этот тренд только в контексте замены иностранного ПО уже неуместно. За последний год тема эволюционировала, и сейчас всё чаще употребляют такое понятие, как импортоопережение. Смысл его в том, чтобы заменить западные системы на более продвинутые российские аналоги. Для вендоров это означает, что пора действовать на опережение и создавать качественно новые программные продукты, использующие технологии, которых нет даже на Западе. Только следуя такому курсу, можно сохранить конкурентоспособность и привлекательность в глазах российских заказчиков.

Кибербезопасность, облака и искусственный интеллект

Согласно опросу CNews Analytics, к числу наиболее перспективных технологий, на основе которых должны строиться ИТ-решения нового поколения, относятся кибербезопасность, облака и искусственный интеллект.

Несмотря на уход западных вендоров и неутешительные прогнозы аналитиков, российский рынок ИБ и облачных сервисов неуклонно растет. Эксперты утверждают, что в ближайшие годы в сегменте средств защиты информации останутся исключительно отечественные производители. Что касается облачных сервисов, здесь спрос пока превышает предложение. Но ниша постепенно заполняется, в том числе и благодаря небольшим провайдерам.

Можно предположить, что аналогично сложится и судьба искусственного интеллекта. Не зря же ИИ причисляют к технологическим драйверам развития российских отраслей экономики. Но не всё так прозрачно. Насколько сильно санкционный кризис 2022 года подстегнул отечественные софтверные компании к разработке интеллектуальных программ и сервисов? Получилось ли последним составить серьезную конкуренцию международным лидерам в аналогичном сегменте? Давайте разбираться.

В России дефицит интеллектуальных систем обработки корпоративных данных

За 2021-2022 годы в Единый реестр отечественного ПО внесли более 7000 продуктов.

По оценке экспертов Directum, лишь 5% включенных программ относятся к искусственному интеллекту, а к сегменту ИИ-обработки текстовой информации и того меньше – не более 1-2%. Способен ли удовлетворить этот скромный объем ПО растущие аппетиты российских компаний? Сомнительно. Тем более что среди указанных 1-2% немало стартапов, рассчитанных конкретно на потребности среднего и малого бизнеса.

А что же с крупными вендорами? В январе 2023 года портал ECM-Journal провел обзор российских СЭД, ECM, BPM-систем и выяснил, что далеко не все из них можно назвать интеллектуальными. Одни вендоры интегрируют в системы сторонние сервисы распознавания и извлечения данных (зачастую тех самых стартапов), другие только начинают разработку собственных модулей, и лишь немногие уже встроили искусственный интеллект на уровне платформы и практикуют ИИ-обработку контента у клиентов.

CIO крупных компаний предъявляют особые требования к способностям искусственного интеллекта в управлении документами и бизнес-процессами. По мнению директоров по ИТ, сегодня ИИ должен:

  • выполнять за сотрудников рутинные операции (ввод данных в систему, сравнение версий документов);
  • анализировать информацию и помогать руководителям принимать управленческие решения;
  • определять ответственных исполнителей, исходя из содержания документа;
  • самообучаться в процессе своей «жизнедеятельности» на новых данных;
  • находить и оценивать риски, содержащиеся в тексте договоров.

Исследование российской софтверной отрасли, проведенное Ассоциацией «РУССОФТ» в декабре 2022 года, подтверждает, что роль искусственного интеллекта в корпоративных процессах смещается от автоматизации задач к упрощению и ускорению работы сотрудников, кардинально меняется качество привычных услуг.

Почему сейчас самое время внедрять интеллектуальную систему

Внедрение классической системы электронного документооборота сокращает среднее время регистрации документов на 35-50%. Но если переложить ту же операцию на плечи ИИ, то эффект будет выше – скорость повысится сразу до 50-70%.

Уже с первых дней эксплуатации интеллектуальная система начинает работать на будущее. Начав применять ИИ сейчас, компании создают «подушку безопасности» от различных вызовов внешней среды и потрясений рынка, действуют на опережение и предупреждают возможные риски. Например, уходят от человеческих ошибок, подстраховывают себя от возможных многомиллионных штрафов и неустоек. Благодаря встроенным ИИ внутренние процессы ускоряются минимум в 2 раза, сокращаются издержки и операционные расходы.

Помимо прямых выгод перехода на ИИ, есть и косвенные. При увеличении объема документооборота (а в крупных компаниях такое происходит постоянно) не нужно расширять штат специалистов. Искусственному интеллекту не важно, какое количество документов обрабатывать – 100, 1000 или 20 000. Он в любом случае сделает это быстрее и качественнее человека. При этом стоимость владения им останется прежней?

Инструменты ИИ дообучаются в процессе своей деятельности. Но для выхода на плато эффективности им необходимо время – для того чтобы накопить данные, адаптироваться под документопоток и процессы организации. Откладывая внедрение интеллекта, компания отодвигает и срок окупаемости проекта.

Когда компания сможет окупить расходы на внедрение ИИ-системы

Искусственный интеллект – дорогая инвестиция. За какой период компания окупит деньги, потраченные на покупку и внедрение интеллектуального ПО? И что всё-таки выгоднее – внедрить интеллектуальную систему, которая «может всё», или интегрировать несколько ИИ-сервисов с текущей информационной системой?

Таблица окупаемости интеллектуальной системы в 2023 г.

Сколько времени понадобится бизнесу, чтобы вернуть инвестированные средства? Срок окупаемости главным образом зависит от масштаба документооборота в компании. Чем больше объем документов, тем выше совокупная стоимость проекта, но и быстрее окупаемость. Специалисты департамента интеллектуальных решений компании Directum подсчитали, в какой период предприятия различных сфер экономики могут вернуть средства, инвестированные в покупку системы ИИ.

Тип компании Объем документов в день, шт. Объем документов в месяц, шт. Стоимость проекта, млн ₽ Срок окупаемости
Производственное предприятие 500 25 000 8,5 – 9,2 1,5 года
Предприятие добывающей промышленности 1 000 50 000 13,8 – 15 1 год
Компания финансового сектора (банки, страховые) или ритейла 4 000 100 000 19,5 – 22 6 месяцев

Что внедрять – одну интеллектуальную систему или несколько сервисов ИИ? Сравнительная таблица

Еще один важный вопрос – внедрять одну интеллектуальную систему с уже встроенными ИИ-механизмами или выбрать несколько «умных» сервисов и интегрировать их с информационной системой, которая уже используется в компании?

В таблице приведено сравнение по 10 параметрам, включая тип лицензирования, обновление версий, частотность доработок, удобство работы пользователей.

Критерий Система со встроенным ИИ ИИ как отдельное решение/набор сервисов
1 Лицензирование Приобретается одна лицензия на использование системы, которая предполагает подключение неограниченного числа пользователей и безлимитную обработку документов. На каждое решение покупается отдельная лицензия.
2 Скорость начала работы После установки система сразу готова к работе. Интеграционные решения со сторонними ИИ-компонентами требуют отдельного проектирования, согласования контрактов межсистемного взаимодействия, учета особенностей работы каждого компонента (пропускной способности, способов авторизации и т.д.), реализация коннекторов и прикладных сценариев подготовки данных для первоначального обучения моделей ИИ.
3 Стоимость работ на внедрении Механизмы ИИ встроены в «коробку». Компания платит только за внедрение системы. 0 часов С каждым сервисом настраивается интеграция. Не исключено, что потребуется разработка коннектора, поиск данных для обучения, адаптация ИИ-решений к работе основной системы. Реализация одной интеграции – от 200 до 400 часов.
4 Частотность проектов доработки ИИ-систем или необходимость в регулярной доработке Система готова к работе сразу после обновления. В каждом случае требуется запускать новый проект внедрения.
5 Обновление версий Обновление обходится дешевле и проходит быстрее, так как требуется меньше кастомизаций базовых сущностей. При раздельном обновлении решений всегда возникают дополнительные операции – доработка коннекторов. Каждое серьезное обновление – это отдельный проект по внедрению функциональности, который к тому же стоит денег. Чем меньше кастомизации базовых сущностей, тем проще обновление. Интеллект в интеграционных решениях добавляет свою логику, которая может расходиться с «коробкой» новой версии и это гарантированно приведет к ручному дорогому обновлению.
6 Техническая поддержка Работает единая служба поддержки. При появлении вопросов по настройке, функционированию системы, клиент может обратиться к готовым методологическим рекомендациям. В случае более серьезных инцидентов проблемы решаются по принципу «единого окна». Поиск виноватых в случае сбоя работы интеграционных решений – это игра в футбол между вендорами, где мяч – это клиент и его бизнес.
7 Автоматическое дообучение В системах со встроенным ИИ механизмы дообучения постоянно анализируют ошибки своей работы и фоново запускают процесс дообучения на накопленных данных – без привлечения сотрудников со стороны вендора или заказичка. Дообучение возможно при наличии обратной связи от пользователя и возможностей интегрируемой ИИ-системы накапливать нужные данные. Дообучение – отдельная задача с дополнительной трудоемкостью внедрения.
8 Удобство работы пользователей Высокое: пользователи выполняют задачи в едином интерфейсе системы. Низкое: приходится работать в нескольких системах, из-за постоянных переключений между интерфейсами тратится время
9 Единые инструменты развертывания Все компоненты системы устанавливаются при помощи единого инсталлятора. Для настройки всех компонентов необходимо запустить 3-4 разных инструмента установки, выполнить несколько скриптов от root`а, настроить справочники в системе. Здесь легко совершить ошибку, но сложно установить, в каком из инсталляторов или скриптов она была допущена.
10 Мониторинг работы системы Единая система логирования и трассировки запросов позволяет отследить весь путь обработки документов. В процессе обработки документов могут возникнуть типичные проблемы: документ не заносится, не запустилось сравнение, фоновая индексация перестала работать. Так как приходится работать в интерфейсах нескольких систем, выяснение, где происходит прерывание обработки документа, превращается в квест.

Directum RX Intelligence – система нового поколения

В 2022 году ИТ-компания Directum представила новый вариант поставки своего флагманского программного продукта – систему Directum RX Intelligence. Вендор встроил интеллектуальные механизмы в «коробку», и теперь ИИ используется на всех этапах обработки текстовой информации.

Сегодня Directum RX Intelligence – единственная отечественная система со встроенным искусственным интеллектом, зарегистрированная в Едином реестре российского ПО (запись 4499). Она разработана на территории РФ, соответствуют всем критериям импортозамещения и устойчивости к внешним санкциям, учитывает запросы российских клиентов, регулярно развивается и обновляется. Может заменить системы иностранных вендоров, включающих интеллектуальную обработку данных – OpenText Suite for SAP, IBM FileNet, Documentum, IBM Lotus Notes/Domino, Microsoft Sharepoint.
Directum RX Intelligence подходит крупному и среднему бизнесу, а также органам государственного управления. Нагрузочное тестирование подтвердило отказоустойчивость системы при 50 тыс. одновременных подключений, что в реальных условиях означает стабильную работу 80-120 тыс. человек.

Благодаря тому, что интеллект работает на уровне платформы, клиенту не нужно дополнительно внедрять интеллектуальные инструменты или настраивать с ними интеграцию. Налицо экономия времени и бюджета. Вся работа проходит в едином интерфейсе. За работоспособность системы отвечает один поставщик, поэтому в случае инцидента поддержка оказывается в 2-3 раза быстрее.

Функциональные возможности Directum RX Intelligence

Система – это виртуальный помощник сотрудников, который выручает в различных однотипных договорных, финансовых, делопроизводственных процессах, связанных с обработкой большого количества документов:

  • извлекает из них текстовый слой;
  • классифицирует: определяет границы документа без использования штрихкода, вид документа, тип хозяйственной операции и т.д.;
  • извлекает реквизиты (наименования контрагентов, организаций, подписывающих сотрудников, адресатов) без лимита по обработанным страницам или документам;
  • выявляет расхождения при сравнении документов разных форматов.

Но способности встроенного ИИ, конечно, не ограничиваются только исключением ручного труда из рутинных участков работы. В процессе использования системы интеллектуальные механизмы автоматически дообучаются на новых данных, это помогает улучшать точность классификации документов и извлечения фактов. Еще они фоново индексируют документы без текстового слоя, например, скан-копии, не прошедшие предварительной интеллектуальной обработки, и делают их доступными для полнотекстового поиска.

Дополнительно в рамках заказной разработки интеллектуальные механизмы можно научить определять по содержанию документа ответственных исполнителей, инициировать задачи по определенным маршрутам, анализировать эффективность бизнес-процессов, находить наиболее трудозатратные этапы и перегруженных исполнителей.

Как будут развиваться интеллектуальные системы в России

Развитие ИИ в нашей стране зависит от поддержки государства. А она сегодня оказывается в полной мере. По словам вице-премьера Дмитрия Чернышенко, объем российского рынка ИИ-технологий к 2030 году должен быть не менее 20 млрд рублей, то есть увеличиться минимум в два раза. Способствовать развитию интеллектуальных технологий и их массовому внедрению в бизнес будут «ключевые партнеры по развитию ИИ».

Игорь Беляк, руководитель департамента интеллектуальных решений компании Directum, выделил три направления, над которыми его команда будет работать в перспективе 2-3-х лет. Это цифровые ассистенты сотрудников, самообучаемость системы, Process Mining:

«Directum RX Intelligence уже сейчас выполняет роль цифрового ассистента – заносит документы в систему, извлекает реквизиты, заполняет карточки. Но мы планируем выйти за рамки типовых процессов и усовершенствовать эту функциональность, что повысит производительность работы человека. Например, ИИ-ассистент будет готовить подборку задач, которые условно можно выполнить за 10 минут. Когда у сотрудника появится окно в 10 минут, он потратит время на то, чтобы выполнить одну из предложенных ассистентом задач».

Еще один пример развития цифровых ассистентов – это подбор контекста для выполнения заданий. Пользователь получает в работу задачу с автоматически сформированным набором документов, дополнительной информацией, отчетом, ссылками и т.д., быстро погружается в контекст и оперативно принимает решение. Для этого отлично подходят большие генеративные модели (типа ChatGPT), обученные на документах клиента. Игорь Беляк поделился, что подобные исследования с использованием моделей, доступных локально, его команда уже проводит.

«Любая интеллектуальная система, тем более нового поколения, должна быть самообучаемой. В процессе работы в Directum RX Intelligence пользователь дает фидбек, который мы учитываем. Это один из ключевых принципов vision`а нашего продукта – любой интеллектуальный механизм должен дообучаться в процессе работы. Этот принцип всегда ложится в основу проектирования наших новых решений».

Третье направление, которое вендор планирует активно развивать, это Process Mining. Встроенный интеллект имеет прямой доступ к данным и информации о работе системы. Это плодородная почва для того, чтобы анализировать эффективность процессов, обнаруживать «бутылочные горлышки» и выдавать рекомендации по оптимизации процессов. Благодаря этому отпадает необходимость в проведении сложных аудиторских мероприятий. Допустим, компания ежемесячно согласует в системе 40 тыс. договоров, при этом каждый месяц 9 тыс. договоров согласуются с нарушением сроков. Искусственный интеллект анализирует ситуацию, выясняет, какую сумму регулярно недополучает компания и подсказывает, на каком участке работ тормозится согласование. Причина может быть банальной – в процессе согласования участвует один человек, и он физически не может работать быстрее.

Интеллект уже в «коробке»: о чем еще можно мечтать?

Несмотря на то что современные интеллектуальные системы не умеют мыслить на уровне человека и принимать за него решения, они уже делают то, что не под силу людям. Например, за бухгалтеров обрабатывают огромные объемы первичных документов, причем в минимально короткие сроки; за делопроизводителей анализируют тысячи входящих писем в день, определяют ответственных исполнителей и формируют проекты резолюций; за юристов сравнивают версии договора, находят несоответствия и подсвечивают риски. Помимо текстовых данных, в любой компании есть аудио- и видеозаписи деловых встреч.

С помощью ИИ разбор совещаний перестает быть мукой – протокол формируется автоматически, сотруднику не приходится вручную набирать или расшифровывать текст.
Есть еще много типовых и нетиповых сценариев, где можно применить технологии искусственного интеллекта. В Directum RX Intelligence ИИ-механизмы встроены в «коробку», поэтому начать применять искусственный интеллект в деле можно минуя этап внедрения.

erid:Kra23jgitРекламодатель: ООО "Директум"ИНН/ОГРН: 1835056809/1031801962092Сайт: https://www.directum.ru/